Printed Pages - 4

Roll No.:....

azaddu adu adi a 322454(22) Wall shitz A

B. E. (Fourth Semester) Examination, April-May 2021

(New Scheme)

(CSE Engg. Branch)

COMPUTER SYSTEMS ARCHITECTURE

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) is compulsory from each unit. Attempt any two from part (b), (c) and (d).

Unit-l

1. (a) Name the functional units of computer.

2

				[3	3]			
(c)	Explain	the	working	of	carry	lookahead	adder	with

(b)	A two word instruction is stored in memory at an					
	address designated by the symbol W. The address					
	field of the instruction (stored at $W + 1$) is designated					
	by the symbol Y. The operand used during the					
	execution of the instruction is stored at an address					
	symbolized by Z. An index register contains the value					
	X. State how Z is calculated from the other address					
	if the addressing mode of the instruction is:					
	(i) direct	13.				
	(ii) indirect					
	(iii) relative					
	(iv) indexed	7				
(-)	The late the misseum argument control unit with post					
(c)	Explain the microprogrammed control unit with neat	7				
	and clean diagram.	7				
(d)	Explain the subroutine with parameter passing using					
	a program.	7				
	Albrimann Pass Marker 1 28					
Unit-II						
Any		2				
(a)	Define guard and rounding bits.	2				

[2]

	a neat diagram.	,
	(d) Show the contents of registers E, A, Q and SC during the process of division of two fixed point binary numbers in signed magnitude representation	
	wait 10100011 by 1011. We also got have self-miles I ye	,
	Unit-III NII leageling the searching of DMA (Drace Alcomore)	
3.	(a) Define Cache memory.	-
	(b) Explain the associative memory organization and	
	derive the expression for match logic.	,
	(c) What do you mean by virtual memory? An address space is specified by 24 bits and corresponding memory space by 16 bits:	
	(i) How many words are there in the address space?	
	(ii) How many words are there in memory space?	
	(iii) If a page consists of 2 K words, how many pages and blocks are these in the system?	
	(d) Explain the direct memory mapping used in Cache organization with diagram.	

(b) Multiply A = 110101 and B = 011011 using Booth

2.

Algorithm.

[4]

(er salian la salian at a Unit-IV status salatieig (3)

4.	(a)	Define interrupt.	2		
	(b)	Define priority interrupt. Explain daisy-chaining priority interrupt with block diagram.	7		
	(c)	Explain the working of asynchronous communication interface with block diagram.			
	(d)	Explain the working of DMA (Direct Memory Access) with neat diagram.	7		
		Unit-V			
5.	(a)	What do you understand by Parallel processing?	2		
	(b)	A non-pipeline system takes 50 ns to process a task. The same task can be processed in a six-			
		segment pipeline with a clock cycle of 10 ns. Determine the speed-up ratio of the pipline for 100			
	tasks. What is the maximum speed-up that can be achieved?				
	(c)	Explain the architecture pipeline in detail.	7		
	(d)	Write short notes on: Wear work and weight of			
		(i) Vector processor regards flow unaccoping to	31/2		
		(ii) Array processor	31/2		